

Automated Partition Management for Analysis Services
Tabular Models

Microsoft BI Technical Article

Writer: Christian Wade

Contributors and Technical Reviewers: Owen Duncan, Marco Russo (SQLBI), Bill Anton (Opifex

Solutions), Josh Caplan, Anand Bheemarajaiah, Akshai Mirchandani, Marius Dumitru

Published: January 2017

Applies to: Microsoft SQL Server 2016 Analysis Services, Microsoft Azure Analysis Services

Summary: This whitepaper and associated samples describe partition management automation by using

the Tabular Object Model (TOM).

Copyright

This document and associated samples are provided as-is. Information and views expressed in this

document, including URL and other Internet Web site references, may change without notice. You bear

the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2016 Microsoft. All rights reserved

2

Contents
Introduction .. 3

Partitioning Strategy & Assumptions .. 4

Rolling-window pattern .. 4

Partition granularity .. 4

Mixed granularity .. 4

Parallelization .. 4

Online & offline processing ... 4

Non-partitioned table processing ... 4

Table omission .. 4

Configuration & logging database .. 5

Date key format & type .. 5

Getting Started .. 5

Requirements .. 5

AsPartitionProcessing solution ... 5

AdventureWorks ... 5

SampleClient ... 5

Configuration & Logging Database ... 8

Data model .. 8

ModelConfiguration .. 9

TableConfiguration ... 9

PartitioningConfiguration ... 10

ProcessingLog .. 10

Sample Configuration ... 11

Database deployment ... 12

Database connection info ... 13

Test Different Configurations.. 13

Incremental mode ... 13

Increment partition range... 14

Offline processing ... 15

Non-partitioned table processing & table omission ... 16

Merging partitions .. 18

Mixed-granularity configurations ... 19

3

Validation of date ranges for mixed granularity configurations ... 21

Other Considerations .. 22

Cloud architecture .. 22

Command-line execution .. 23

Syntax .. 23

Arguments ... 23

Examples ... 24

AsPerfMon .. 25

Custom logging ... 25

Fragmentation .. 26

Locking and blocking ... 26

Auto retry .. 27

Parallelization of incremental processing ... 27

Model deployment ... 28

Introduction
Analysis Services tabular models can store data in a highly-compressed, in-memory cache for optimized

query performance. This provides fast user interactivity over large data sets.

Large datasets normally require table partitioning to accelerate and optimize the data-load process.

Partitioning enables incremental loads, increases parallelization, and reduces memory consumption. The

Tabular Object Model (TOM) serves as an API to create and manage partitions. TOM was released with

SQL Server 2016 and is discussed in more detail here. Model Compatibility Level 1200 or above is

required.

This document describes how to use the AsPartitionProcessing TOM code sample for automated

partition management.

The sample,

• Is intended to be generic and configuration driven.

• Works for both Azure Analysis Services and SQL Server Analysis Services tabular models.

• Can be leveraged in many ways including from an SSIS script task, Azure Functions and others.

Note: Loading data into the in-memory cache is often referred to as processing. This terminology is used

by this document.

https://msdn.microsoft.com/en-us/library/microsoft.analysisservices.tabular.aspx
https://technet.microsoft.com/en-us/library/mt712541.aspx
https://github.com/Microsoft/Analysis-Services/tree/master/AsPartitionProcessing

4

Partitioning Strategy & Assumptions

Rolling-window pattern
AsPartitionProcessing follows the rolling-window pattern, which is common in traditional Analysis

Services implementations. The data is kept within a predefined date range and incremented as

necessary. This maintains memory usage within a predictable range over time.

Partition granularity
Yearly, monthly and daily partition granularities can be configured. Choice of granularity is influenced by

various factors including how much data is required to be incrementally refreshed and how much

processing time is acceptable. For example, if only the last 3 days need to be refreshed daily, it may be

beneficial to use daily granularity.

Mixed granularity
Mixed granularity for a table can also be configured for scenarios such as near-real time refresh at low

grain coupled with historical, static partitions at higher granularity. This results in fewer partitions for a

table, but also increases management overhead to ensure partition ranges are defined correctly. Unless

there are hundreds of partitions or more, there is normally no significant query-performance penalty

resulting from keeping the partitions at the lowest grain.

Parallelization
Initial setup processing is sequential. Incremental processing can be performed in parallel.

Initial setup will create and process the partitions for the first time based on the configuration. This is

performed one partition at a time to limit memory consumption (data is not fully compressed during

processing). For a large data set, the initial load may typically take a few hours depending on factors

such as the query performance of the source system.

Incremental processing is submitted as a parallelized operation for all tables and partitions within a

model.

Online & offline processing
Incremental processing can be performed as an online operation, or offline for less memory usage; it is

configuration driven. Online incremental processing requires a copy of the data to be maintained in

memory for queries until the new data is ready, and then switches to the new data. When processing

multiple tables, keeping the model online can be less efficient because it often requires recalculation of

the same calculated columns, relationships and indexes multiple times. Offline processing has the

benefit of performing this recalculation just once at the end of the processing window.

Non-partitioned table processing
The sample can be configured to process non-partitioned tables in addition to partitioned ones. This

avoids having to set up a separate process to refresh non-partitioned tables.

Table omission
It is possible to configure that some tables in the model are not refreshed at all during normal

incremental processing. Tables that may not require frequent processing often include the date

dimension, categorical dimensions, and facts that may be defined annually such as budget.

5

Configuration & logging database
Traditional Analysis Services implementations that require partitioning often use a configuration and

logging database. AsPartitionProcessing is meant to work in this way, although this is optional. It can be

set up to log messages to other targets. This enables easy partition configuration, and diagnosis of issues

resulting from automated processing operations.

Date key format & type
Date keys in source tables used for partitioning can be either integers formatted as yyyymmdd, or based

on one of the date datatype.

Getting Started

Requirements
Before you get started, you’ll need these tools:

SQL Server 2017 - Install the database engine and SSAS in tabular mode. You can download and install

CTP from here here.

SQL Server Data Tools – Download and install the latest version here.

SQL Server Management Studio - Download and install the latest version here.

Visual Studio 2017 – Download and install the free Community Edition here.

AsPartitionProcessing solution
Get the AsPartitionProcessing solution here.

1. Open the solution in Visual Studio and build the project. The hint path for the client library DLLs

is the following (assuming installation is on C:\ drive):

C:\Program Files (x86)\Microsoft SQL Server\130\SDK\Assemblies

2. Ensure AsPartitionProcessing.SampleClient is set as the startup project.

AdventureWorks
The quickest way to understand the code sample is to run it on the AdventureWorksDW sample

database. The backup file, AdventureWorksDW.bak, is included in the solution.

The tabular project, AsPartitionProcessing.AdventureWorks, is also provided in the solution. It should be

used instead of the version from CodePlex because partitioning has been removed from the Internet

Sales and Reseller Sales tables. Instead, these tables each have a single partition with the same name as

the table, which is the default when you create a new table in SSDT. This partition acts as the template

partition used by the AsPartitionProcessing sample.

Deploy and process the AdventureWorks tabular model.

SampleClient
AsPartitionProcessing.SampleClient is a console application with a reference to the

AsPartitionProcessing class library. It can easily be converted to work for customer projects.

Alternatively, it provides sample client code to execute from an SSIS package, Azure Function, or other

mechanism.

https://www.microsoft.com/en-us/evalcenter/evaluate-sql-server-vnext-ctp
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://www.visualstudio.com/vs/community/
https://github.com/Microsoft/Analysis-Services/tree/master/AsPartitionProcessing

6

In Program.cs, the _executionMode variable is set to InitializeInline.

private static ExecutionMode _executionMode = ExecutionMode.InitializeInline;

This ensures the InitializeAdventureWorksInline method will be executed to initialize parameters. This

method contains inline definition of the partitioning configuration. It shows that Internet Sales is

partitioned by the OrderDateKey column, which is an integer formatted as yyyymmdd. Reseller Sales is

partitioned by the OrderDate column, which is of type datetime. Both formats are supported.

Internet Sales is partitioned by month and holds 12 months of data. Reseller Sales is partitioned by year

and holds 3 years of data.

Execute the AsPartitionProcessing.SampleClient project. The console output should be displayed like

this:

7

Use SSMS to inspect the partitions created. Note that the date ranges have been specified for each M

expression.

8

Configuration & Logging Database
The AsPartitionProcessing.ConfigurationLogging project is a SQL Server Database project containing the

necessary database schema. AsPartitionProcessing contains the methods for reading and writing to the

database.

Data model

ModelConfiguration

TableConfiguration

ProcessingLog

PartitioningConfiguration

9

ModelConfiguration
Configuration information for an AS tabular model:

Column Description

ModelConfigurationID Primary key.

AnalysisServicesServer Name of the Analysis Services instance. Can be SSAS
or an Azure AS URL.

AnalysisServicesDatabase Name of the Analysis Services database.

InitialSetUp True for initial set up to create partitions and process
them sequentially.
False for incremental processing.
See Partitioning Strategy & Assumptions section
above for more information.

IncrementalOnline When initialSetUp=false, determines if processing is
performed as an online operation, which can require
more memory, but allows users to query the model
during processing.
True to keep the model online (process Full).
See Partitioning Strategy & Assumptions section
above for more information.

IntegratedAuth Should always be set to true for SSAS
implementations that will run under the current
process account.
For Azure AS, use this option if the current Windows
process account is synchronized with Azure AD.

UserName Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

Password Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

MaxParallelism Sets the maximum number of threads on which to
run processing commands in parallel. -1 will not set
the value.

CommitTimeout Set to override of CommitTimeout server property
value for the connection. -1 will not override; the
server value will be used.

RetryAttempts Number of times a retry of the processing operation
will be performed if an error occurs. Use for near-real
time scenarios and environments with network
reliability issues.

RetryWaitTimeSeconds Number of seconds to wait before a retry attempt.

TableConfiguration
Configuration information for a table within an AS tabular model:

Column Description

TableConfigurationID Primary key.

ModelConfigurationID Foreign key to ModelConfiguration table.

10

AnalysisServicesTable Name of the partitioned table in the tabular model.

DoNotProcess Set to true to exclude the table from processing. This
can be used to dynamically include/exclude tables.
For example, near-realtime processing during the day
requires only a few tables to be processed; overnight
processing may process all tables.

PartitioningConfiguration
Configuration information for partitioning of a table within an AS tabular model.:

Column Description

PartitioningConfigurationID Primary key.

TableConfigurationID Foreign key to TableConfiguration table.

Granularity Partition granularity, which can be Yearly, Monthly or
Daily.
Daily = 0,
Monthly = 1,
Yearly = 2

NumberOfPartitionsFull Count of all partitions in the rolling window. For
example, a rolling window of 10 years partitioned by
month would require 120 partitions.

NumberOfPartitionsForIncrementalProcess Count of hot partitions where the data can change.
For example, it may be necessary to refresh the most
recent 3 months of data every day. This only applies
to the most recent partitions.

MaxDateIsNow Assumes maximum date to be accounted for in the
partitioned table is the date that the code sample is
run. Typically, data is loaded up to previous day, or
the current day. If the data fits this profile, this
setting allows running the code sample every day
without having to update the MaxDate value in the
configuration and logging database.

MaxDate If MaxDateIsNow=false, the maximum date that
needs to be accounted for in the partitioning
configuration.

IntegerDateKey Assumes date keys in the source database are
integers of the format yyyymmdd. If false assumes
dates.

TemplateSourceQuery Template M expression for M partitions, or source-
database native query used for query partitions.
Requires placeholders for start and end dates of the
form {0} and {1} respectively.

ProcessingLog
Log of partitioning execution:

Column Description

ProcessingLogID Primary key.

11

ModelConfigurationID Foreign key to ModelConfiguration table.

ExecutionID GUID generated for the execution run.

LogDateTime Date and time the message was logged.

Message The log message.

MessageType The type of the log message: Informational or Error.

Sample Configuration
The AsPartitionProcessing.ConfigurationLogging project contains the SampleConfiguration.sql script to

initialize the configuration for AdventureWorks. It can be modified for use in customer implementations.

The script t is executed automatically upon publishing the database.

INSERT INTO [dbo].[ModelConfiguration]
VALUES(
 1 --[ModelConfigurationID]
 ,'localhost' --[AnalysisServicesServer]
 ,'AdventureWorks' --[AnalysisServicesDatabase]
 ,1 --[InitialSetUp]
 ,1 --[IncrementalOnline]
 ,1 --[IntegratedAuth]
 ,-1 --[MaxParallelism]
 ,-1 --[CommitTimeout]
 ,0 --[RetryAttempts]
 ,0 --[RetryWaitTimeSeconds]
);

INSERT INTO [dbo].[TableConfiguration]
VALUES(
 1 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Internet Sales' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 2 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Reseller Sales' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
);

INSERT INTO [dbo].[PartitioningConfiguration]
VALUES(
 1 --[PartitioningConfigurationID]
 ,1 --[TableConfigurationID]
 ,1 --[Granularity] 1=Monthly
 ,12 --[NumberOfPartitionsFull]
 ,3 --[NumberOfPartitionsForIncrementalProcess]
 ,0 --[MaxDateIsNow]
 ,'2012-12-01' --[MaxDate]
 ,1 --[IntegerDateKey]
 ,
'let
 Source = #"AdventureWorks",
 dbo_FactInternetSales = Source{[Schema="dbo",Item="FactInternetSales"]}[Data],
 #"Filtered Rows" = Table.SelectRows(dbo_FactInternetSales, each [OrderDateKey] >=

12

 {0} and [OrderDateKey] < {1}),
 #"Sorted Rows" = Table.Sort(#"Filtered Rows",{{"OrderDateKey", Order.Ascending}})
in
 #"Sorted Rows"' --[TemplateSourceQuery]
),
(
 2 --[PartitioningConfigurationID]
 ,2 --[TableConfigurationID]
 ,2 --[Granularity] 2=Yearly
 ,3 --[NumberOfPartitionsFull]
 ,1 --[NumberOfPartitionsForIncrementalProcess]
 ,0 --[MaxDateIsNow]
 ,'2012-12-01' --[MaxDate]
 ,0 --[IntegerDateKey]
 ,
'let
 Source = #"AdventureWorks",
 dbo_FactResellerSales = Source{[Schema="dbo",Item="FactResellerSales"]}[Data],
 #"Filtered Rows" = Table.SelectRows(dbo_FactResellerSales, each [OrderDate] >= {0}
and [OrderDate] < {1}),
 #"Sorted Rows" = Table.Sort(#"Filtered Rows",{{"OrderDate", Order.Ascending}})
in
 #"Sorted Rows"' --[TemplateSourceQuery]
);

Database deployment
To publish the database, right click on the AsPartitionProcessing.ConfigurationLogging project and select

Publish. To match the app.config settings below, the database name should be AsPartitionProcessing.

One of the advantages of using a SQL Server Database project is that new versions can be easily schema

compared with an existing version that is already set up with customer data.

13

Database connection info
Connection information to the configuration and logging database can be set in App.config in the

userSettings section.

<userSettings>
 <AsPartitionProcessing.SampleClient.Settings>
 <setting name="ConfigServer" serializeAs="String">
 <value>localhost</value>
 </setting>
 <setting name="ConfigDatabase" serializeAs="String">
 <value>AsPartitionProcessing</value>
 </setting>
 <setting name="ConfigDatabaseIntegratedAuth" serializeAs="String">
 <value>True</value>
 </setting>
 </AsPartitionProcessing.SampleClient.Settings>
</userSettings>

Test Different Configurations
In this section, we will update the configuration, execute the sample, and view the log messages.

In Program.cs, change the _executionMode variable to be assigned InitializeFromDatabase.

private static ExecutionMode _executionMode = ExecutionMode.InitializeFromDatabase;

Execute the SampleClient application. If the SampleClient application was previously run from the

Getting Started section, messages will show the partitions already exist and are processed.

In addition to the console output, the usp_LastProcessingLogs stored procedure in the configuration and

logging database can be used to show the execution results.

EXEC [dbo].[usp_LastProcessingLogs]

The usp_LastProcessingLogs stored procedure has 2 optional parameters; one to specify the number of

executions, and another to display only error messages. The following example shows error messages

for the last 3 executions.

EXEC [dbo].[usp_LastProcessingLogs] @ExecutionCount=3, @ErrorsOnly=1

Incremental mode
Execute the following UPDATE statement to switch to incremental mode:

UPDATE [dbo].[ModelConfiguration] SET [InitialSetUp] = 0

Execute SampleClient application, and the log query. The following results should be shown. Only the

specified number of most recent partitions are processed as an online operation.

Start: 12:41:02 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

14

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-10 /Full
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2012 /Full

Final operations

 Save changes ...

Finish: 12:41:07 PM

Increment partition range
Execute the following UPDATE statement to increment the partition range by one period.

UPDATE [dbo].[PartitioningConfiguration] SET [MaxDate] = '2013-01-01'

Execute SampleClient application, and the log query. The following results should be shown. The oldest

partition is removed from both tables, a new one is added and the most recent partitions are processed.

Start: 12:47:26 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

15

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Remove old partition 2012-01
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full
 Create new partition 2013-01
 Parallel process partition 2013-01 /Full

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Remove old partition 2010
 Create new partition 2013
 Parallel process partition 2013 /Full

Final operations

 Save changes ...

Finish: 12:47:34 PM

Offline processing
Execute the following UPDATE statement to perform offline processing and potentially use less memory.

UPDATE [dbo].[ModelConfiguration] SET [IncrementalOnline] = 0

Execute SampleClient application, and the log query. The following results should be shown. The

partitions are processed using RefreshType of DataOnly, and a Calculate operation is performed to bring

the model back online. The model may or may not be online during this time. These operations

correspond to the processing actions available in SSMS and are documented here.

Start: 12:53:19 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01

https://msdn.microsoft.com/library/hh758414.aspx

16

 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly

Final operations

 Save changes ...
 Recalc model to bring back online ...

Finish: 12:53:27 PM

Non-partitioned table processing & table omission
Execute the following INSERT statement to create table configurations for the Customer, Product and

Sales Quota tables.

INSERT INTO [dbo].[TableConfiguration]
VALUES(
 3 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Customer' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 4 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Product' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 5 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Sales Quota' --[AnalysisServicesTable]
 ,1 --[DoNotProcess]

17

);

Sales Quota has DoNotProcess equal to 1, so it will be excluded from processing. This flag can be used to

dynamically include and exclude tables. For example, certain tables can be processed during the day for

near-real time requirements and other tables processed overnight.

The Customer and Product tables will be processed. They do not have entries in the

PartitioningConfiguration table, so they will be treated as non-partitioned tables and processed at the

table level.

Other tables in the model that do not have table configuration entries are omitted from processing.

Some tables may have no ongoing processing requirements. For example, the date-dimension table and

categorical dimension tables typically have no need to be processed daily, so they can be left out

altogether.

Execute SampleClient application, and the log query. The following results should be shown. The

Customer and Product non-partitioned tables are processed.

Start: 08:55:05 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly
 Save changes for table Internet Sales ...

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:

18

 Parallel process partition 2013 /DataOnly
 Save changes for table Reseller Sales ...

Non-partitioned processing for table Customer

 Process table Customer /DataOnly

Non-partitioned processing for table Product
--
 Process table Product /DataOnly

Final operations

 Save changes ...
 Recalc model to bring back online ...

Finish: 08:55:17 PM

Merging partitions
Merging of partitions may be useful in mixed-granularity scenarios. For example, merging historical days

into a month, or merging historical months into a year. Care must be taken when merging partitions to

ensure it is done correctly. Once merged, it is not possible to unmerge.

In Program.cs, change the _executionMode variable to be assigned MergePartitions.

private static ExecutionMode _executionMode = ExecutionMode.MergePartitions;

Execute SampleClient application, and the log query. The following results should be shown. The months

in 2012 are merged into the year 2012.

Merge partitions into 2012 for table Internet Sales

=>Actions & progress:
 Create new merged partition 2012 for table Internet Sales
 Partition 201202 to be merged into 2012
 Partition 201203 to be merged into 2012
 Partition 201204 to be merged into 2012
 Partition 201205 to be merged into 2012
 Partition 201206 to be merged into 2012
 Partition 201207 to be merged into 2012
 Partition 201208 to be merged into 2012
 Partition 201209 to be merged into 2012
 Partition 201210 to be merged into 2012
 Partition 201211 to be merged into 2012
 Partition 201212 to be merged into 2012
 Save changes for table Internet Sales ...

Finish: 10:03:38 PM

Inspect the new partition structure in SSMS.

19

Mixed-granularity configurations
For mixed granularity scenarios, it may be necessary to set up multiple configurations for a single table.

This allows automated removal of old partitions – at different granularities – that fall out of range. If

automated removal is not required, it is not necessary to set up mixed-granularity configurations. Care

must be taken to ensure they are maintained correctly to avoid integrity issues.

In Program.cs, change the _executionMode variable back to InitializeFromDatabase.

private static ExecutionMode _executionMode = ExecutionMode.InitializeFromDatabase;

Execute the following INSERT and UPDATE statements to configure mixed granularity for the Internet

Sales table. The yearly configuration covers 2012; the monthly one covers January through March 2013.

There is no overlap between the date ranges at different granularities.

--Insert yearly configuration for Internet Sales
INSERT INTO [dbo].[PartitioningConfiguration]
VALUES
(
 3 --[PartitioningConfigurationID]
 ,1 --[TableConfigurationID]
 ,2 --[Granularity] 2=Yearly
 ,1 --[NumberOfPartitionsFull]
 ,1 --[NumberOfPartitionsForIncrementalProcess]
 ,0 --[MaxDateIsNow]
 ,'2012-12-31' --[MaxDate]
 ,1 --[IntegerDateKey]
 ,
'let
 Source = #"AdventureWorks",
 dbo_FactInternetSales = Source{[Schema="dbo",Item="FactInternetSales"]}[Data],
 #"Filtered Rows" = Table.SelectRows(dbo_FactInternetSales, each [OrderDateKey] >=

{0} and [OrderDateKey] < {1}),
 #"Sorted Rows" = Table.Sort(#"Filtered Rows",{{"OrderDateKey", Order.Ascending}})
in
 #"Sorted Rows"' --[TemplateSourceQuery]
);

--Update monthly configuration for Internet Sales

20

UPDATE dbo.[PartitioningConfiguration] SET
 NumberOfPartitionsFull = 3,
 NumberOfPartitionsForIncrementalProcess = 3,
 MaxDate = '2013-03-01'
WHERE PartitioningConfigurationID = 1;

Execute SampleClient application, and the log query. The following results should be shown. Internet

Sales has 3 partitions at the month level, and 1 at the year level.

Start: 11:24:05 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Yearly):
 MIN partition: 2012
 MAX partition: 2012
 Partition count: 1

=>New partition range (Yearly):
 MIN partition: 2012
 MAX partition: 2012
 Partition count: 1

=>Actions & progress:
 Parallel process partition 2012 /DataOnly

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2013-01
 MAX partition: 2013-01
 Partition count: 1

=>New partition range (Monthly):
 MIN partition: 2013-01
 MAX partition: 2013-03
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013-01 /DataOnly
 Create new partition 2013-02
 Parallel process partition 2013-02 /DataOnly
 Create new partition 2013-03
 Parallel process partition 2013-03 /DataOnly

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

21

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly

Non-partitioned processing for table Customer

 Process table Customer /DataOnly

Non-partitioned processing for table Product
--
 Process table Product /DataOnly

Final operations

 Save changes ...
 Recalc model to bring back online ...

Finish: 11:24:15 PM

Validation of date ranges for mixed granularity configurations
It is important to ensure there are no overlapping date ranges at different granularities for the same

table. AsPartitionProcessing performs some validation to avoid this.

Execute the following UPDATE statement to extend the yearly configuration range to include 2012 and

2013. There is now an overlap with the monthly configuration range, which covers January through

March of 2013.

--Update yearly configuration for Internet Sales
UPDATE dbo.[PartitioningConfiguration] SET
 NumberOfPartitionsFull = 2,
 MaxDate = '2013-01-01'
WHERE PartitioningConfigurationID = 3;

Execute SampleClient application, and the log query. The following results should be shown. An

exception was raised due to overlapping date ranges for the same table.

Start: 11:51:22 PM
Server: localhost
Database: AdventureWorks

Exception occurred: 11:51:48 PM
Exception message: Table Internet Sales contains partitioning configurations with
overlapping date ranges, which is not allowed. Yearly upper boundary is 2013-12-31;
Monthly lower boundary is 2013-01-01.

Execute the following UPDATE statement to remove the overlap.

--Update yearly configuration for Internet Sales
UPDATE dbo.[PartitioningConfiguration] SET
 NumberOfPartitionsFull = 1,
 MaxDate = '2012-01-01'
WHERE PartitioningConfigurationID = 3;

22

Other Considerations

Cloud architecture
AsPartitionProcessing can be used in cloud PaaS/SaaS architectures. The following diagram shows an

example of such an architecture.

Azure SQL Database is used for the configuration and logging database.

Azure Functions is used with a reference to the AsPartitionProcessing class library. Execution can be

triggered in various ways. The following list is just a sample of the options available with Azure

Functions. Detailed discussion on the pros and cons of each option is outside the scope of this

document.

• Scheduled using a Timer function CRON expression. In this case, it is not necessary to set up a

separate scheduling system.

• Using a webhook request for a WebHook function, or an HTTP request for an HttpTrigger

function. This allows integration with existing scheduling systems that can call a URL.

• Triggered from Azure Queue using built-in integration points in Azure Functions.

To create an Azure Function, search for Function App in the Azure Marketplace. Specify a Hosting Plan of

App Service Plan (not Consumption Plan) to allow long-running function calls. Note that the costs are

different depending on the hosting plan.

It is necessary to upload the TOM and AsPartitionProcessing DLLs to Azure Functions. See here for more

information on how to do this. The TOM DLLs must be the minimum version to work with Azure Analysis

Services, and are available by installing the client libraries from here. The following screenshot shows

the Azure Functions editor with the DLLs uploaded to the bin folder and referenced at the top.

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-csharp#referencing-external-assemblies
https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-connect#client-libraries

23

With the necessary class-library references in place, the function body can be written using SampleClient

as a template. Again, PerformProcessing is the key method.

PartitionProcessor.PerformProcessing(modelConfig, ConfigDatabaseHelper.LogMessage);

The modelConfig parameter can be initialized in a similar way to the SampleClient application.

Information that SampleClient stores in App.config for the configuration and logging database can be

stored using built-in Azure Functions application settings.

It is not necessary for the LogMessage delegate parameter to refer to a method defined in Azure

Functions if there are no custom logging requirements. Instead the ConfigDatabaseHelper.LogMessage

method can be referenced directly as it has the required signature.

Command-line execution
In the examples above, the _executionMode variable was changed in the code. It can also be set using a

command-line argument from the Command Prompt or PowerShell. This reduces the cases where code

changes are required.

Syntax
AsPartitionProcessing.SampleClient.exe

 [--ExecutionMode ExecutionMode]

 [--MergeTable MergeTable]

 [--MergeTargetGranularity MergeTargetGranularity]

 [--MergePartitionKey MergePartitionKey]

 [--ModelConfigurationIDs ModelConfigurationIDs]

Arguments
--ExecutionMode

Execution mode of SampleClient. Possible values are:

InitializeInline: Initialize configuration inline using sample values.

InitializeFromDatabase: Initialize from configuration and logging database.

MergePartitions: Merge partitions in a table based on other arguments.

24

DefragPartitionedTables: Defragment partitioned tables in the model. List of partitioned tables

defined in the configuration and logging database.

--MergeTable

When ExecutionMode=MergePartitions, name of the partitioned table in the tabular model.

--TargetGranularity

When ExecutionMode=MergePartitions, granularity of the newly created partition. Possible

values are Yearly or Monthly.

--MergePartitionKey

When ExecutionMode=MergePartitions, target partition key. If year, follow yyyy; if month

follow yyyymm.

--ModelConfigurationIDs

Comma-delimited list of ModelConfigurationIDs to filter on when getting worklist from the

configuration and logging database.

 --Help

Display the help screen.

Examples
The following command initializes from the configuration and logging database. All models listed in the

ModelConfiguration table are considered for processing.

AsPartitionProcessing.SampleClient.exe --ExecutionMode InitializeFromDatabase

The following command initializes from the configuration and logging database. Only models with

ModelConfigurationID equal to 1, 2 or 3 are considered for processing.

AsPartitionProcessing.SampleClient.exe ^

 --ExecutionMode InitializeFromDatabase ^

 --ModelConfigurationIDs 1,2,3

The following command defragments partitioned tables defined in the configuration and logging

database.

AsPartitionProcessing.SampleClient.exe --ExecutionMode DefragPartitionedTables

The following PowerShell example merges monthly partitions from the previous year in the Internet

Sales table. It could be scheduled for execution on the earliest day of a new year where business rules

dictate the previous year’s data is no longer subject to change.

$Today = Get-Date
$LastYear = $Today.AddYears(-1) | Get-Date -Format yyyy
.\AsPartitionProcessing.SampleClient.exe `
 --ExecutionMode MergePartitions `
 --MergeTable 'Internet Sales' `
 --TargetGranularity Yearly `
 --MergePartitionKey $LastYear

25

The following PowerShell example merges daily partitions from the previous month in the Internet Sales

table. It could be scheduled for execution on the earliest day of a new month where business rules

dictate the previous month’s data is no longer subject to change.

$Today = Get-Date
$LastMonth = $Today.AddMonths(-1) | Get-Date -Format yyyyMM
.\AsPartitionProcessing.SampleClient.exe `
 --ExecutionMode MergePartitions `
 --MergeTable 'Internet Sales' `
 --TargetGranularity Monthly `
 --MergePartitionKey $LastMonth

AsPerfMon
Another code sample that may be useful in conjunction with AsPartitionProcessing is the AsPerfMon

tool, which is available here. AsPerfMon can be used to check real-time memory usage during

processing. It splits memory usage by database, which is informative when multiple databases share the

same server.

This is useful for Azure AS since you can’t use Task Manager or create Performance Monitor counters.

Similar functionality is provided by the Metrics section in the control blade for an Azure AS server in the

Azure Portal. By using Metrics, you can check usage for the past day or week. AsPerfMon is for real-time

monitoring during processing.

Custom logging
The LogMessage method in SampleClient Program.cs is passed as a delegate into the PerformProcessing

method, so it can easily be changed for custom logging requirements.

private static void LogMessage(string message , MessageType messageType,
 ModelConfiguration partitionedModel)
{
 //Can provide custom logging code here

https://github.com/Microsoft/Analysis-Services/tree/master/AsPerfMon

26

 ...

Fragmentation
Partitioned tables may suffer from fragmentation over time. When a partition is removed from a table,

hash dictionary entries for the columns are retained even if all the rows referring to those values have

been removed. Defragmentation removes the unused dictionary entries. It is not necessary to perform

defragmentation on non-partitioned tables because they are processed at the table level.

Defragmentation of large tables can be an expensive, sometimes time-consuming, operation. Further

information on defragmentation is available here. Dictionary and table size can be monitored using

community tools such as VertiPaq Analyzer and SSAS Memory Usage Report.

In Program.cs, change the _executionMode variable to be assigned DefragPartitionedTables.

private static ExecutionMode _executionMode = ExecutionMode.DefragPartitionedTables;

Execute SampleClient application, and the log query. The following results should be shown. The tables

with partitioning configurations are defragmented.

Start: 12:30:15 PM
Server: localhost
Database: AdventureWorks

Defrag partitioned tables in database AdventureWorks
--

=>Actions & progress:
 Defrag table Internet Sales ...
 Defrag table Reseller Sales ...

Finish: 12:30:17 PM

Locking and blocking
Detailed discussion around locking causes and diagnosis is out of the scope of this document. However,

it is worth pointing out that queries take Commit_Read locks, which can block Commit_Write locks.

Commit_Write locks are required by processing operations. Therefore, long-running queries can block

processing operations. Normally, processing operations will wait for the period set in the

ForceCommitTimeout server property; the default is 30 seconds. If the query still hasn’t finished, the

query will be cancelled by the server and the processing operation will then continue. The client tool

executing the query will see an error such as the following.

Executing the query ...
The operation was cancelled because of locking conflicts.

In some cases, it may be beneficial to prioritize queries over processing operations. For example, when

performing small, near-real time refreshes at regular intervals during the day. If many users are using

the system, it is often preferable to allow queries to run to completion and fail the processing operation

instead, especially if it will run again after a short interval anyway.

This can be achieved using the CommitTimeout property. CommitTimeout is a server property to specify

how long the server will wait to acquire write locks (typically for processing operations). The default

value is zero (0), meaning the server will wait indefinitely. In practice, it does not normally wait more

https://cathydumas.com/2012/04/30/process-defrag/
http://www.sqlbi.com/tools/vertipaq-analyzer/
http://www.kasperonbi.com/new-ssas-memory-usage-report-using-power-bi/

27

than 30 seconds because ForceCommitTimeout will kick in and fail long-running queries (as explained

above).

CommitTimeout can be overridden for a connection used by processing operations. With

ForceCommitTimeout set to the default of 30 seconds and CommitTimeout set to 20 seconds,

processing operations will wait 20 seconds to acquire write locks. If still blocked by a long-running query,

the processing operation will fail instead, allowing the query to run to completion.

In Program.cs, change the _executionMode variable to be assigned InitializeFromDatabase.

private static ExecutionMode _executionMode = ExecutionMode.InitializeFromDatabase;

Execute the following UPDATE statement to set CommitTimeout to 20 seconds (20,000 miliseconds).

UPDATE [dbo].[ModelConfiguration] SET [CommitTimeout] = 20000

If you now start execution of a long-running query (over 20 seconds) just before execution of the

SampleClient application, the processing operation should fail with the following error message.

Exception message: Failed to save modifications to the server. Error returned: 'The
lock operation timed out'.

Note that commit operations have been optimized considerably for tabular models in SQL Server 2016.

This has caused noticeable improvements in locking and blocking for some customers with near-real

time processing requirements. Database write-commit locks are required to safely complete tasks such

as merging pending changes, persisting files to disk, clearing some cached state, deletion of old files, etc.

In previous versions of Analysis Services, a server-level write commit lock was taken while most of these

tasks were performed. With SQL Server 2016, the server-level locks are far more limited; they are only

taken while producing the delta of transaction updates, and are then immediately released.

Auto retry
In the near-real time scenario described above, and in cases where the environment is subject to

reliability problems such as network connectivity issues, auto retry can be configured.

The following UPDATE statement instructs the code sample to retry 3 times with an interval of 20

seconds between each retry attempt.

UPDATE [dbo].[ModelConfiguration] SET [RetryAttempts] = 3, [RetryWaitTimeSeconds] = 20

Parallelization of incremental processing
Incremental processing is submitted by AsPartitionProcesssing as a parallelized operation for all tables

and partitions within a model. Parallelization can be reduced by setting the MaxConnections property

on a data source in SSMS. The default of 10 means that no more than 10 queries will be submitted to

that data source at a time. This can be used to limit stress on source systems during processing.

28

Analysis Services will determine the number of concurrent processing jobs based on the number of

cores and available threads. These threads are shared across the server instance, and therefore one

command may not receive all the available threads. The threads that do launch processing jobs may

then be stalled to stay within the MaxConnections limit.

Resource-constrained environments can further limit parallelization by setting the MaxParallelism

property for a connection used to submit processing requests. The following example UPDATE

statement limits AsPartitionProcessing to 2 concurrent processing operations.

UPDATE [dbo].[ModelConfiguration] SET [MaxParallelism] = 2

The impact of setting MaxConnections and MaxParallelism is visible using the SSAS performance

counters in the Threads section such as Processing pool busy non-I/O threads.

Model deployment
When deploying new versions of partitioned tabular models that already exist on the target

environment, it is necessary to be aware of the partitioning process in-place. As shown by the code

sample, partitions are normally created and managed separately from the deployment process. This

means the version of the tabular model from source control typically does not contain the partitions. A

simple deployment process such as right-click, Deploy from SSDT will lose the partitions and all the data

within them. Tools that support deployment retaining partitions include BISM Normalizer and the

Analysis Services Deployment Wizard. Both these tools support command-line execution for automated

deployment. Detailed discussion on this topic including the pros and cons of these tools is outside the

scope of this document.

https://msdn.microsoft.com/en-us/library/hh230807.aspx?f=255&MSPPError=-2147217396#bkmk_Threads
https://msdn.microsoft.com/en-us/library/hh230807.aspx?f=255&MSPPError=-2147217396#bkmk_Threads
https://marketplace.visualstudio.com/items?itemName=ChristianWade.BISMNormalizer3
https://msdn.microsoft.com/library/ms176121.aspx

