

Automated Partition Management for Analysis Services
Tabular Models

Microsoft BI Technical Article

Writer: Christian Wade, Senior Program Manager, Microsoft Corp.

Contributor: Owen Duncan, Senior Content Developer, Microsoft Corp.

Published: January 2017

Applies to: Microsoft SQL Server 2016 Analysis Services, Microsoft Azure Analysis Services

Summary: This whitepaper and associated samples describe partition management automation by using

the Tabular Object Model (TOM).

Copyright

This document and associated samples are provided as-is. Information and views expressed in this

document, including URL and other Internet Web site references, may change without notice. You bear

the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2016 Microsoft. All rights reserved

2

Contents
Introduction .. 3

Partitioning Strategy & Assumptions .. 3

Rolling-window pattern .. 3

Partition granularity .. 3

Mixed granularity .. 4

Parallelization .. 4

Online & offline processing ... 4

Non-partitioned table processing ... 4

Table omission .. 4

Configuration & logging database .. 4

Date key format .. 4

Getting Started .. 5

Requirements .. 5

AsPartitionProcessing solution ... 5

AdventureWorks ... 5

SampleClient ... 5

Configuration & Logging Database ... 8

Data model .. 8

ModelConfiguration .. 8

TableConfiguration ... 9

PartitioningConfiguration ... 9

ProcessingLog .. 10

Sample Configuration ... 10

Database connection info ... 11

Test Different Configurations.. 12

Incremental mode ... 12

Increment partition range... 13

Offline processing ... 14

Sequential table processing .. 15

Non-partitioned table processing & table omission ... 16

Merging partitions .. 18

Mixed granularity configurations .. 19

3

Validation of date ranges for mixed granularity configurations ... 21

Defragmentation ... 21

Other Options & Considerations ... 22

Custom logging ... 22

Locking .. 22

Model deployment ... 22

AsPerfMon .. 22

Introduction
Analysis Services tabular models can store data in a highly-compressed, in-memory cache for optimized

query performance. This provides fast user interactivity over large data sets.

Large datasets normally require table partitioning to accelerate and optimize the data-load process.

Partitioning enables incremental loads, increases parallelization, and reduces memory consumption. The

Tabular Object Model (TOM) serves as an API to create and manage partitions. TOM was released with

SQL Server 2016 and is discussed in more detail here. Model Compatibility Level 1200 or above is

required.

This document describes how to use the AsPartitionProcessing TOM code sample for automated

partition management with minimal code changes.

The sample,

 Is intended to be generic and configuration driven.

 Works for both Azure Analysis Services and SQL Server Analysis Services tabular models.

 Can be leveraged in many ways including from an SSIS script task, Azure Functions and others.

Note: Loading data into the in-memory cache is often referred to as processing. This terminology is used

by this document.

Partitioning Strategy & Assumptions

Rolling-window pattern
AsPartitionProcessing follows the rolling-window pattern, which is common in traditional Analysis

Services implementations. The data is kept within a predefined date range and incremented as

necessary. This maintains memory usage within a predictable range over time.

Partition granularity
Yearly, monthly and daily partition granularities can be configured. Choice of granularity is influenced by

various factors including how much data is required to be incrementally refreshed and how much

processing time is acceptable. For example, if only the last 3 days need to be refreshed daily, it may be

beneficial to use daily granularity.

https://msdn.microsoft.com/en-us/library/microsoft.analysisservices.tabular.aspx
https://technet.microsoft.com/en-us/library/mt712541.aspx
https://github.com/Microsoft/Analysis-Services/tree/master/AsPartitionProcessing

4

Mixed granularity
Mixed granularity for a table can also be configured for scenarios such as near-real time refresh at low

grain coupled with historical, static partitions at higher granularity. This results in fewer partitions for a

table, but also increases management overhead to ensure partition ranges are defined correctly. Unless

there are hundreds of partitions or more, there is normally no significant query-performance penalty

resulting from keeping the partitions at the lowest grain.

Parallelization
Initial setup processing is sequential. Incremental processing can be performed in parallel.

Initial setup will create and process the partitions for the first time based on the configuration. This is

performed one partition at a time to avoid running out of memory (data is not fully compressed during

processing). For a large data set, the initial load may typically take a few hours depending on factors

such as the query performance of the source system.

Incremental processing can be configured to execute as a fully parallelized operation for all tables within

a model. It can also be configured to process different tables one at a time. The reason to consider

processing one table at a time is again to work within memory constraints. When processing multiple

partitions within a single table, they are always done in parallel.

Online & offline processing
Incremental processing can be performed as an online operation, or offline for less memory usage; it is

configuration driven. Online incremental processing requires a copy of the data to be maintained in

memory for queries until the new data is ready, and then switches to the new data. When processing

multiple tables, keeping the model online can be less efficient because it often requires recalculation of

the same calculated columns, relationships and indexes multiple times. Offline processing has the

benefit of performing this recalculation just once at the end of the processing window.

Non-partitioned table processing
The sample can be configured to process non-partitioned tables in addition to partitioned ones. This

avoids having to set up a separate process to refresh non-partitioned tables.

Table omission
It is possible to configure that some tables in the model are not refreshed at all during normal

incremental processing. Tables that may not require frequent processing often include the date

dimension, categorical dimensions, and facts that may be defined annually such as budget.

Configuration & logging database
Traditional Analysis Services implementations that require partitioning often use a configuration and

logging database. AsPartitionProcessing is meant to work in this way, although this is optional. It can be

set up to log messages to other targets. This enables easy partition configuration, and diagnosis of issues

resulting from automated processing operations.

Date key format
Date keys in source table are assumed to be integers formatted as yyyymmdd for partitioned

processing. This format is commonly used for data warehouses and marts. If this is not available, it

should be possible to derive such a column in a database view.

5

Getting Started

Requirements
Before you get started, you’ll need these tools:

SQL Server 2016 with latest service pack - Install the database engine and SSAS in tabular mode. You

can download and install the free SQL Server 2016 Developer Edition here.

SQL Server Data Tools – Download and install the latest version here.

SQL Server Management Studio - Download and install the latest version here.

Visual Studio 2015 – Download and install the free Community Edition here.

AsPartitionProcessing solution
Get the AsPartitionProcessing solution here.

1. Open the solution in Visual Studio and build the project. The hint path for the client library DLLs

is the following (assuming installation is on C:\ drive):

C:\Program Files (x86)\Microsoft SQL Server\130\SDK\Assemblies

2. Ensure AsPartitionProcessing.SampleClient is set as the startup project.

AdventureWorks
The quickest way to understand the code sample is to run it on the AdventureWorksDW sample

database. The backup file, AdventureWorksDW.bak, is included in the solution.

The tabular project, AsPartitionProcessing.AdventureWorks, is also provided in the solution. It should be

used instead of the version from CodePlex because partitioning has been removed from the Internet

Sales and Reseller Sales tables. Instead, these tables each have a single partition with the same name as

the table, which is the default when you create a new table in SSDT. This partition acts as the template

partition used by the AsPartitionProcessing sample.

Deploy and process the AdventureWorks tabular model.

SampleClient
AsPartitionProcessing.SampleClient is a console application with a reference to the

AsPartitionProcessing class library. It can easily be converted to work for customer projects.

Alternatively, it provides sample client code to execute from an SSIS package, Azure Function, or other

mechanism.

In Program.cs, note the ExecutionMode constant.

const SampleExecutionMode ExecutionMode = SampleExecutionMode.InitializeInline;

This means the InitializeAdventureWorksInline method will be executed to initialize parameters.

ModelConfiguration partitionedModel = new ModelConfiguration(
 modelConfigurationID: 1,
 analysisServicesServer: "localhost",

https://www.microsoft.com/en-us/sql-server/sql-server-editions-developers
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://www.visualstudio.com/vs/community/
https://github.com/Microsoft/Analysis-Services/tree/master/AsPartitionProcessing

6

 analysisServicesDatabase: "AdventureWorks",
 initialSetUp: true,
 incrementalOnline: true,
 incrementalParallelTables: true,
 integratedAuth: true,
 userName: "",
 password: "",
 tableConfigurations:
 new List<TableConfiguration>
 {
 new TableConfiguration(
 tableConfigurationID: 1,
 analysisServicesTable: "Internet Sales",
 partitioningConfigurations:
 new List<PartitioningConfiguration>
 {
 new PartitioningConfiguration(
 partitioningConfigurationID: 1,
 granularity: Granularity.Monthly,
 numberOfPartitionsFull: 12,
 numberOfPartitionsForIncrementalProcess: 3,
 maxDate: Convert.ToDateTime("2012-12-01"),
 sourceTableName: "[dbo].[FactInternetSales]",
 sourcePartitionColumn: "OrderDateKey"
)
 }
),
 new TableConfiguration(
 tableConfigurationID: 2,
 analysisServicesTable: "Reseller Sales",
 partitioningConfigurations:
 new List<PartitioningConfiguration>
 {
 new PartitioningConfiguration(
 partitioningConfigurationID: 2,
 granularity: Granularity.Yearly,
 numberOfPartitionsFull: 3,
 numberOfPartitionsForIncrementalProcess: 1,
 maxDate: Convert.ToDateTime("2012-12-01"),
 sourceTableName: "[dbo].[FactResellerSales]",
 sourcePartitionColumn: "OrderDateKey"
)
 }
)
 }
);

Place a breakpoint at the Main method and step through the code in the

AsPartitionProcessing.SampleClient project to understand how to interact with the methods exposed by

the class library. The PerformProcessing method is the key method.

PartitionProcessor.PerformProcessing(modelConfig, LogMessage);

The console output should be displayed like this:

7

Use SSMS to inspect the partitions created. Partition source queries take the simple form:

SELECT * FROM <source table> WHERE <partition filter>

8

Configuration & Logging Database
Typically, partitioning configuration and logging is done using a database. AsPartitionProcessing contains

the CreateDatabaseObjects.sql script to create the necessary tables, and contains the methods for

reading and writing to the database.

Data model

ModelConfiguration

TableConfiguration

ProcessingLog

PartitioningConfiguration

ModelConfiguration
Configuration information for an AS tabular model:

Column Description

9

ModelConfigurationID Primary key.

AnalysisServicesServer Name of the Analysis Services instance. Can be SSAS
or an Azure AS URL.

AnalysisServicesDatabase Name of the Analysis Services database.

InitialSetUp True for initial set up to create partitions and process
them sequentially.
False for incremental processing.
See Partitioning Strategy & Assumptions section
above for more information.

IncrementalOnline When initialSetUp=false, determines if processing is
performed as an online operation, which can require
more memory, but allows users to query the model
during processing.
True to keep the model online (process Full).
See Partitioning Strategy & Assumptions section
above for more information.

IncrementalParallelTables When initialSetUp=false, determines if separate
tables are processed in parallel. Note: partitions
within a table are always processed in parallel.
True to process tables in parallel.
See Partitioning Strategy & Assumptions section
above for more information.

IntegratedAuth Should always be set to true for SSAS
implementations that will run under the current
process account.
For Azure AS, normally set to false.

UserName Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

Password Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

TableConfiguration
Configuration information for a table within an AS tabular model:

Column Description

TableConfigurationID Primary key.

ModelConfigurationID Foreign key to ModelConfiguration table.

AnalysisServicesTable Name of the partitioned table in the tabular model.

DoNotProcess Set to true to exclude the table from processing. This
can be used to dynamically include/exclude tables.
For example, near-realtime processing during the day
requires only a few tables to be processed; overnight
processing may process all tables.

PartitioningConfiguration
Configuration information for partitioning of a table within an AS tabular model.:

10

Column Description

PartitioningConfigurationID Primary key.

TableConfigurationID Foreign key to TableConfiguration table.

Granularity Partition granularity, which can be Yearly, Monthly or
Daily.
Daily = 0,
Monthly = 1,
Yearly = 2

NumberOfPartitionsFull Count of all partitions in the rolling window. For
example, a rolling window of 10 years partitioned by
month would require 120 partitions.

NumberOfPartitionsForIncrementalProcess Count of hot partitions where the data can change.
For example, it may be necessary to refresh the most
recent 3 months of data every day. This only applies
to the most recent partitions.

MaxDate The maximum date that needs to be accounted for in
the partitioning configuration.

SourceTableName Name of the source table in the relational database.

SourcePartitionColumn Name of the source column from the table in the
relational database.

ProcessingLog
Log of partitioning execution:

Column Description

ProcessingLogID Primary key.

ModelConfigurationID Foreign key to ModelConfiguration table.

ExecutionID GUID generated for the execution run.

LogDateTime Date and time the message was logged.

Message The log message.

Sample Configuration
The SampleConfiguration.sql script initializes the configuration for AdventureWorks. The script can be

modified for use in customer implementations. Execute the script to initialize the database.

INSERT INTO [dbo].[ModelConfiguration]
VALUES(
 1 --[ModelConfigurationID]
 ,'localhost' --[AnalysisServicesServer]
 ,'AdventureWorks' --[AnalysisServicesDatabase]
 ,1 --[InitialSetUp]
 ,1 --[IncrementalOnline]
 ,1 --[IncrementalParallelTables]
 ,1 --[IntegratedAuth]
);

INSERT INTO [dbo].[TableConfiguration]
VALUES(

11

 1 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Internet Sales' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 2 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Reseller Sales' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
);

INSERT INTO [dbo].[PartitioningConfiguration]
VALUES(
 1 --[PartitioningConfigurationID]
 ,1 --[TableConfigurationID]
 ,1 --[Granularity] 1=Monthly
 ,12 --[NumberOfPartitionsFull]
 ,3 --[NumberOfPartitionsForIncrementalProcess]
 ,'2012-12-01' --[MaxDate]
 ,'[dbo].[FactInternetSales]'--[SourceTableName]
 ,'OrderDateKey' --[SourcePartitionColumn]
),
(
 2 --[PartitioningConfigurationID]
 ,2 --[TableConfigurationID]
 ,2 --[Granularity] 2=Yearly
 ,3 --[NumberOfPartitionsFull]
 ,1 --[NumberOfPartitionsForIncrementalProcess]
 ,'2012-12-01' --[MaxDate]
 ,'[dbo].[FactResellerSales]'--[SourceTableName]
 ,'OrderDateKey' --[SourcePartitionColumn]
);

Database connection info
Connection information to the configuration and logging database can be set in App.config in the

userSettings section.

<userSettings>
 <AsPartitionProcessing.SampleClient.Settings>
 <setting name="ConfigServer" serializeAs="String">
 <value>localhost</value>
 </setting>
 <setting name="ConfigDatabase" serializeAs="String">
 <value>AsPartitionProcessing</value>
 </setting>
 <setting name="ConfigDatabaseIntegratedAuth" serializeAs="String">
 <value>True</value>
 </setting>
 </AsPartitionProcessing.SampleClient.Settings>
</userSettings>

12

Test Different Configurations
In this section, we will update the configuration, execute the sample, and view the log messages.

In Program.cs, change the ExecutionMode constant to be assigned InitializeFromDatabase.

const SampleExecutionMode ExecutionMode = SampleExecutionMode.InitializeFromDatabase;

Execute the SampleClient application, and the log query. If the SampleClient application was previously

run from the Getting Started section, messages will show the partitions already exist and are processed.

In addition to the console output, the following query on the configuration and logging database shows

the execution results. This can be used to test the different configurations below.

SELECT [Message]
FROM [dbo].[ProcessingLog]
WHERE ExecutionID =
(SELECT MAX([ExecutionID]) FROM [dbo].[ProcessingLog]
 WHERE [LogDateTime] = (SELECT MAX([LogDateTime]) FROM [dbo].[ProcessingLog])
)
ORDER BY [LogDateTime]

Incremental mode
Execute the following UPDATE statement to switch to incremental mode:

UPDATE [dbo].[ModelConfiguration] SET [InitialSetUp] = 0

Execute SampleClient application, and the log query. The following results should be shown. Only the

specified number of most recent partitions are processed as an online operation.

Start: 12:41:02 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-10 /Full
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full

Rolling-window partitioning for table Reseller Sales
--

13

=>Current partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2012 /Full

Final operations

 Save changes ...

Finish: 12:41:07 PM

Increment partition range
Execute the following UPDATE statement to increment the partition range by one period.

UPDATE [dbo].[PartitioningConfiguration] SET [MaxDate] = '2013-01-01'

Execute SampleClient application, and the log query. The following results should be shown. The oldest

partition is removed from both tables, a new one is added and the most recent partitions are processed.

Start: 12:47:26 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Remove old partition 2012-01
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full
 Create new partition 2013-01
 Parallel process partition 2013-01 /Full

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2010

14

 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Remove old partition 2010
 Create new partition 2013
 Parallel process partition 2013 /Full

Final operations

 Save changes ...

Finish: 12:47:34 PM

Offline processing
Execute the following UPDATE statement to perform offline processing and potentially use less memory.

UPDATE [dbo].[ModelConfiguration] SET [IncrementalOnline] = 0

Execute SampleClient application, and the log query. The following results should be shown. The

partitions are processed using RefreshType of DataOnly, and a Recalc operation is performed to bring

the model back online.

Start: 12:53:19 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013

15

 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly

Final operations

 Save changes ...
 Recalc model to bring back online ...

Finish: 12:53:27 PM

Sequential table processing
Execute the following UPDATE statement to process tables sequentially for less memory usage. This

setting will take longer to process the model.

UPDATE [dbo].[ModelConfiguration] SET [IncrementalParallelTables] = 0

Execute SampleClient application, and the log query. The following results should be shown. Changes

are saved for each table individually before moving onto the next table.

Start: 01:04:25 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly
 Save changes for table Internet Sales ...

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

16

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly
 Save changes for table Reseller Sales ...

Final operations

 Recalc model to bring back online ...

Finish: 01:04:33 PM

Execute the following UPDATE statement to set back to parallel processing.

UPDATE [dbo].[ModelConfiguration] SET [IncrementalParallelTables] = 1

Non-partitioned table processing & table omission
Execute the following INSERT statement to create table configurations for the Customer, Product and

Sales Quota tables.

INSERT INTO [dbo].[TableConfiguration]
VALUES(
 3 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Customer' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 4 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Product' --[AnalysisServicesTable]
 ,0 --[DoNotProcess]
),
(
 5 --[TableConfigurationID]
 ,1 --[ModelConfigurationID]
 ,'Sales Quota' --[AnalysisServicesTable]
 ,1 --[DoNotProcess]
);

Sales Quota has DoNotProcess equal to 1, so it will be excluded from processing. This flag can be used to

dynamically include and exclude tables. For example, certain tables can be processed during the day for

near-real time requirements and other tables processed overnight.

The Customer and Product tables will be processed. They do not have entries in the

PartitioningConfiguration table, so they will be treated as non-partitioned tables and processed at the

table level.

17

Other tables in the model that do not have table configuration entries are omitted from processing.

Some tables may have no ongoing processing requirements. For example, the date-dimension table and

categorical dimension tables typically have no need to be processed daily, so they can be left out

altogether.

Execute SampleClient application, and the log query. The following results should be shown. The

Customer and Product non-partitioned tables are processed.

Start: 08:55:05 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly
 Save changes for table Internet Sales ...

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly
 Save changes for table Reseller Sales ...

Non-partitioned processing for table Customer

 Process table Customer /DataOnly

Non-partitioned processing for table Product
--
 Process table Product /DataOnly

Final operations

18

 Save changes ...
 Recalc model to bring back online ...

Finish: 08:55:17 PM

Merging partitions
Merging of partitions may be useful in mixed-granularity scenarios. For example, merging historical days

into a month, or merging historical months into a year. Care must be taken when merging partitions to

ensure it is done correctly. Once merged, it is not possible to unmerge.

In Program.cs, change the ExecutionMode constant to be assigned MergePartitions.

const SampleExecutionMode ExecutionMode = SampleExecutionMode.MergePartitions;

Execute SampleClient application, and the log query. The following results should be shown. The months

in 2012 are merged into the year 2012.

Merge partitions into 2012 for table Internet Sales

=>Actions & progress:
 Create new merged partition 2012 for table Internet Sales
 Partition 201202 to be merged into 2012
 Partition 201203 to be merged into 2012
 Partition 201204 to be merged into 2012
 Partition 201205 to be merged into 2012
 Partition 201206 to be merged into 2012
 Partition 201207 to be merged into 2012
 Partition 201208 to be merged into 2012
 Partition 201209 to be merged into 2012
 Partition 201210 to be merged into 2012
 Partition 201211 to be merged into 2012
 Partition 201212 to be merged into 2012
 Save changes for table Internet Sales ...

Finish: 10:03:38 PM

Inspect the new partition structure in SSMS.

19

Mixed granularity configurations
For mixed granularity scenarios, it may be necessary to set up multiple configurations for a single table.

This allows automated removal of old partitions – at different granularities – that fall out of range. Care

must be taken to ensure multi-grain configurations are set correctly to avoid integrity issues.

In Program.cs, change the ExecutionMode constant back to InitializeFromDatabase.

const SampleExecutionMode ExecutionMode = SampleExecutionMode.InitializeFromDatabase;

Execute the following UPDATE and INSERT statements to configure mixed granularity for the Internet

Sales table. The monthly configuration covers January through March 2013; the yearly one covers 2012.

There is no overlap between the date ranges at different granularities.

--Update monthly configuration for Internet Sales
UPDATE dbo.[PartitioningConfiguration] SET
 NumberOfPartitionsFull = 3,
 NumberOfPartitionsForIncrementalProcess = 3,
 MaxDate = '2013-03-01'
WHERE PartitioningConfigurationID = 1;

--Insert yearly configuration for Internet Sales
INSERT INTO [dbo].[PartitioningConfiguration]
VALUES
(
 3 --[PartitioningConfigurationID]
 ,1 --[TableConfigurationID]
 ,2 --[Granularity] 2=Yearly
 ,1 --[NumberOfPartitionsFull]
 ,1 --[NumberOfPartitionsForIncrementalProcess]
 ,'2012-12-31' --[MaxDate]
 ,'[dbo].[FactInternetSales]'--[SourceTableName]
 ,'OrderDateKey' --[SourcePartitionColumn]
);

Execute SampleClient application, and the log query. The following results should be shown. Internet

Sales has 3 partitions at the month level, and 1 at the year level.

20

Start: 11:24:05 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Yearly):
 MIN partition: 2012
 MAX partition: 2012
 Partition count: 1

=>New partition range (Yearly):
 MIN partition: 2012
 MAX partition: 2012
 Partition count: 1

=>Actions & progress:
 Parallel process partition 2012 /DataOnly

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2013-01
 MAX partition: 2013-01
 Partition count: 1

=>New partition range (Monthly):
 MIN partition: 2013-01
 MAX partition: 2013-03
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013-01 /DataOnly
 Create new partition 2013-02
 Parallel process partition 2013-02 /DataOnly
 Create new partition 2013-03
 Parallel process partition 2013-03 /DataOnly

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly

Non-partitioned processing for table Customer

21

 Process table Customer /DataOnly

Non-partitioned processing for table Product
--
 Process table Product /DataOnly

Final operations

 Save changes ...
 Recalc model to bring back online ...

Finish: 11:24:15 PM

Validation of date ranges for mixed granularity configurations
It is important to ensure there are no overlapping date ranges at different granularities for the same

table. AsPartitionProcessing performs some validation to avoid this.

Execute the following UPDATE statement to extend the yearly configuration range to include 2012 and

2013. There is now an overlap with the monthly configuration range, which covers January through

March of 2013.

--Update yearly configuration for Internet Sales
UPDATE dbo.[PartitioningConfiguration] SET
 NumberOfPartitionsFull = 2,
 MaxDate = '2013-01-01'
WHERE PartitioningConfigurationID = 3;

Execute SampleClient application, and the log query. The following results should be shown. An

exception was raised due to overlapping date ranges in the same table.

Start: 11:51:22 PM
Server: localhost
Database: AdventureWorks

Exception occurred: 11:51:48 PM
Exception message: Table Internet Sales contains partitioning configurations with
overlapping date ranges, which is not allowed. Yearly upper boundary is 2013-12-31;
Monthly lower boundary is 2013-01-01.

Defragmentation
Partitioned tables may suffer from fragmentation over time. When a partition is removed from a table,

the table dictionary entries are retained despite having no rows of data. Defragmentation removes the

unused dictionary entries. It is not necessary to perform defragmentation on non-partitioned tables

because they are processed at the table level. Defragmentation of large tables can be an expensive,

sometimes time-consuming, operation. Further information on defragmentation is available here and

here. Dictionary and table size can be monitored using community tools such as VertiPaq Analyzer and

SSAS Memory Usage Report.

In Program.cs, change the ExecutionMode constant to be assigned DefragPartitionedTables.

const SampleExecutionMode ExecutionMode = SampleExecutionMode.DefragPartitionedTables;

http://sqlblog.com/blogs/marco_russo/archive/2013/03/13/cost-of-process-defrag-in-analysis-services-tabular-ssas-tabular.aspx
https://cathydumas.com/2012/04/30/process-defrag/
http://www.sqlbi.com/tools/vertipaq-analyzer/
http://www.kasperonbi.com/new-ssas-memory-usage-report-using-power-bi/

22

Execute SampleClient application, and the log query. The following results should be shown. The tables

with partitioning configurations are defragmented.

Start: 12:30:15 PM
Server: localhost
Database: AdventureWorks

Defrag partitioned tables in database AdventureWorks
--

=>Actions & progress:
 Defrag table Internet Sales ...
 Defrag table Reseller Sales ...

Finish: 12:30:17 PM

Other Options & Considerations

Custom logging
The LogMessage method in Program.cs is passed as a delegate into the PerformProcessing method, so it

can easily be changed for custom logging requirements.

private static void LogMessage(string message, ModelConfiguration partitionedModel)
{
 //Can provide custom logging code here
 ...

Locking
Todo

Model deployment
When deploying new versions of partitioned tabular models that already exist on the target

environment, it is necessary to be aware of the partitioning process already in-place. As shown by this

code sample, partitions are normally created and managed by a separate process. This means the

version of the tabular model from source control does not contain the partitions. A simple deployment

process such as right-click, Deploy from SSDT will lose the partitions and all the data within them. Two

deployment tools that support retaining partitions are BISM Normalizer and the Analysis Services

Deployment Wizard. Both these tools support command-line execution for automated deployment.

Detailed discussion on this topic including the pros and cons of these tools is outside the scope of this

document.

AsPerfMon
Another code sample that may be useful in conjunction with AsPartitionProcessing is the AsPerfMon

tool, which is available here.

https://marketplace.visualstudio.com/items?itemName=ChristianWade.BISMNormalizer3
https://msdn.microsoft.com/library/ms176121.aspx
https://msdn.microsoft.com/library/ms176121.aspx
https://github.com/Microsoft/Analysis-Services/tree/master/AsPerfMon

23

AsPerfMon can be used to check real-time memory usage during processing. It splits memory usage by

database, which is informative when multiple databases share the same server.

This is especially useful for Azure AS since you can’t use Task Manager or create Performance Monitor

counters. Similar functionality is provided by the Metrics section in the control blade for an Azure AS

server in the Azure Portal. By using Metrics, you can check usage for the past day or week. AsPerfMon is

for real-time monitoring during processing.

AsPerfMon works by polling the DISCOVER_OBJECT_MEMORY_USAGE Data Management View.

https://msdn.microsoft.com/en-us/library/bb934098.aspx

