

Automated Partition Management for Analysis Services
Tabular Models

Microsoft BI Technical Article

Writer: Christian Wade, Senior Program Manager, Microsoft Corp.

Contributor: Owen Duncan, Senior Content Developer, Microsoft Corp.

Published: November 2016

Applies to: Microsoft SQL Server 2016 Analysis Services, Microsoft Azure Analysis Services

Summary: This whitepaper and associated samples describe partition management automation by using

the Tabular Object Model (TOM).

Copyright

This document and associated samples are provided as-is. Information and views expressed in this

document, including URL and other Internet Web site references, may change without notice. You bear

the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2016 Microsoft. All rights reserved

2

Contents
Introduction .. 3

Partitioning Strategy & Assumptions .. 3

Rolling-window pattern .. 3

Partition granularity .. 3

Parallelization .. 3

Online & offline processing ... 4

Configuration and logging database ... 4

Date key format .. 4

Getting Started .. 4

Requirements .. 4

AsPartitionProcessing Solution ... 4

AdventureWorks ... 4

SampleClient ... 5

Configuration & Logging Database ... 7

Data Model ... 7

PartitionedModelConfig.. 8

PartitionedTableConfig ... 8

PartitionedModelLog .. 9

Sample Configuration ... 9

Database connection info ... 10

Test Different Configurations.. 10

Incremental mode ... 11

Increment partition range... 12

Offline processing ... 13

Sequential table processing .. 14

Other Options & Considerations ... 15

Custom Logging ... 15

Granularity .. 15

Fragmentation .. 15

Model Deployment ... 15

AsPerfMon .. 15

3

Introduction
Analysis Services tabular models can store data in a highly-compressed, in-memory cache for optimized

query performance. This provides fast user interactivity over large data sets.

Large datasets normally require table partitioning to accelerate and optimize the data-load process.

Partitioning enables incremental loads, increases parallelization, and reduces memory consumption. The

Tabular Object Model (TOM) serves as an API to create and manage partitions. TOM was released with

SQL Server 2016 and is discussed in more detail here. Model Compatibility Level 1200 or above is

required.

This document describes how to use the AsPartitionProcessing TOM code sample for automated

partition management with minimal code changes.

The sample,

 Is intended to be generic and configuration driven.

 Works for both Azure Analysis Services and SQL Server Analysis Services tabular models.

 Can be leveraged in many ways including from an SSIS script task, Azure Functions and others.

Note: Loading data into the in-memory cache is often referred to as processing. This terminology is used

by this document.

Partitioning Strategy & Assumptions

Rolling-window pattern
AsPartitionProcessing follows the rolling-window pattern, which is common in traditional Analysis

Services implementations. The data is kept within a predefined date range and incremented as

necessary. This maintains memory usage within a predictable range over time.

Partition granularity
Yearly, monthly and daily partition granularities are supported. Partition granularity is defined per table

in the configuration.

Parallelization
Initial setup processing is sequential. Incremental processing can be performed in parallel.

Initial setup will create and process the partitions for the first time based on the configuration. This is

performed one partition at a time to avoid running out of memory (data is not fully compressed during

processing). For a large data set, the initial load may typically take a few hours depending on factors

such as the query performance of the source system.

Incremental processing can be configured to execute as a fully parallelized operation for all tables within

a model. It can also be configured to process different tables one at a time. The reason to consider

processing one table at a time is again to work within memory constraints. When processing multiple

partitions within a single table, they are always done in parallel.

https://msdn.microsoft.com/en-us/library/microsoft.analysisservices.tabular.aspx
https://technet.microsoft.com/en-us/library/mt712541.aspx
https://github.com/Microsoft/AsPartitionProcessing

4

Online & offline processing
Incremental processing can be performed as an online operation, or offline for less memory usage; it is

configuration driven. Online incremental processing requires a copy of the data to be maintained in

memory for queries until the new data is ready, and then switches to the new data.

Configuration and logging database
Traditional Analysis Services implementations that require partitioning often use a configuration and

logging database. AsPartitionProcessing is meant to work in this way, although this is optional. It can be

set up to log messages to other targets. This enables easy partition configuration, and diagnosis of issues

resulting from automated processing operations.

Date key format
Date keys in source table are assumed to be integers formatted as yyyymmdd, which is common for

data warehouses and marts. If this is not available, it should be possible to derive such a column in a

database view.

Getting Started

Requirements
Before you get started, you’ll need these tools:

SQL Server 2016 with latest service pack - Install the database engine and SSAS in tabular mode. You

can download and install the free SQL Server 2016 Developer Edition here.

SQL Server Data Tools – Download and install the latest version here.

SQL Server Management Studio - Download and install the latest version here.

Visual Studio 2015 – Download and install the free Community Edition here.

AsPartitionProcessing Solution
Get the AsPartitionProcessing solution here: https://github.com/Microsoft/AsPartitionProcessing.

1. Open the solution in Visual Studio and build the project. The hint path for the client library DLLs

is the following (assuming installation is on C:\ drive):

C:\Program Files (x86)\Microsoft SQL Server\130\SDK\Assemblies

2. Ensure AsPartitionProcessing.SampleClient is set as the startup project.

AdventureWorks
The quickest way to understand the code sample is to run it on the AdventureWorksDW sample

database. The backup file, AdventureWorksDW.bak, is included in the solution.

The tabular project, AsPartitionProcessing.AdventureWorks, is also provided in the solution. It should be

used instead of the version from CodePlex because partitioning has been removed from the Internet

Sales and Reseller Sales tables. Instead, these tables each have a single partition with the same name as

the table, which is the default when you create a new table in SSDT. This partition acts as the template

partition used by the AsPartitionProcessing sample.

https://www.microsoft.com/en-us/sql-server/sql-server-editions-developers
https://msdn.microsoft.com/en-us/library/mt204009.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://www.visualstudio.com/vs/community/
https://github.com/Microsoft/AsPartitionProcessing

5

Deploy and process the AdventureWorks tabular model.

SampleClient
AsPartitionProcessing.SampleClient is a console application with a reference to the

AsPartitionProcessing class library. It can easily be converted to work for customer projects.

Alternatively, it provides sample client code to execute from an SSIS package, Azure Function, or other

mechanism.

Open Program.cs. Note that UseDatabase = false. This means the InitializeAdventureWorksInline

method will be executed to initialize parameters.

PartitionedModelConfig partitionedModel = new PartitionedModelConfig(
 partitionedModelConfigID: 1,
 analysisServicesServer: "localhost",
 analysisServicesDatabase: "AdventureWorks",
 initialSetUp: true,
 incrementalOnline: true,
 incrementalParallelTables: true,
 integratedAuth: true,
 userName: "",
 password: "",
 partitionedTables:
 new List<PartitionedTableConfig>
 {
 new PartitionedTableConfig(
 partitionedTableConfigID: 1,
 maxDate: Convert.ToDateTime("2012-12-01"),
 granularity: Granularity.Monthly,
 numberOfPartitionsFull: 12,
 numberOfPartitionsForIncrementalProcess: 3,
 analysisServicesTable: "Internet Sales",
 sourceTableName: "[dbo].[FactInternetSales]",
 sourcePartitionColumn: "OrderDateKey"
),
 new PartitionedTableConfig(
 partitionedTableConfigID: 2,
 maxDate: Convert.ToDateTime("2012-12-01"),
 granularity: Granularity.Yearly,
 numberOfPartitionsFull: 3,
 numberOfPartitionsForIncrementalProcess: 1,
 analysisServicesTable: "Reseller Sales",
 sourceTableName: "[dbo].[FactResellerSales]",
 sourcePartitionColumn: "OrderDateKey"
)
 }
);

Place a breakpoint at the Main method and step through the code in the

AsPartitionProcessing.SampleClient project to understand how to interact with the methods exposed by

the class library. The PerformProcessing method is the key method.

PartitionProcessor.PerformProcessing(modelConfig, LogMessage);

6

The console output should be displayed like this:

7

Use SSMS to inspect the partitions created. Partition source queries take the simple form:

SELECT * FROM <source table> WHERE <partition filter>

Configuration & Logging Database
Typically, partitioning configuration and logging is done using a database. AsPartitionProcessing contains

the CreateDatabaseObjects.sql script to create the necessary tables, and contains the methods for

reading and writing to the database.

Data Model

PartitionedModelConfig

PartitionedTableConfig

PartitionedModelLog

8

PartitionedModelConfig
Configuration information for a partitioned AS tabular model:

Column Description

PartitionedModelConfigID Primary key.

AnalysisServicesServer Name of the Analysis Services instance. Can be SSAS
or an Azure AS URL.

AnalysisServicesDatabase Name of the Analysis Services database.

InitialSetUp True for initial set up to create partitions and process
them sequentially.
False for incremental processing.
See Partitioning Strategy & Assumptions section
above for more information.

IncrementalOnline When initialSetUp=false, determines if processing is
performed as an online operation, which can require
more memory, but allows users to query the model
during processing.
True to keep the model online (process Full).
See Partitioning Strategy & Assumptions section
above for more information.

IncrementalParallelTables When initialSetUp=false, determines if separate
tables are processed in parallel. Note: partitions
within a table are always processed in parallel.
True to process tables in parallel.
See Partitioning Strategy & Assumptions section
above for more information.

IntegratedAuth Should always be set to true for SSAS
implementations that will run under the current
process account.
For Azure AS, normally set to false.

UserName Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

Password Only applies when integratedAuth=false. Can be used
for Azure AD UPNs to connect to Azure AS.

PartitionedTableConfig
Configuration information for a partitioned table within an AS tabular model:

Column Description

PartitionedTableConfigID Primary key.

PartitionedModelConfigID Foreign key to PartitionedModelConfig table.

MaxDate The maximum date that needs to be accounted for in
the partitioned table. Represents the upper
boundary of the rolling window.

Granularity Partition granularity, which can be Yearly, Monthly or
Daily.
Daily = 0,

9

Monthly = 1,
Yearly = 2

NumberOfPartitionsFull Count of all partitions in the rolling window. For
example, a rolling window of 10 years partitioned by
month would require 120 partitions.

NumberOfPartitionsForIncrementalProcess Count of hot partitions where the data can change.
For example, it may be necessary to refresh the most
recent 3 months of data every day. This only applies
to the most recent partitions.

AnalysisServicesTable Name of the partitioned table in the tabular model.

SourceTableName Name of the source table in the relational database.

SourcePartitionColumn Name of the source column from the table in the
relational database.

PartitionedModelLog
Log of partitioning execution:

Column Description

PartitionedModelLogID Primary key.

PartitionedTableConfigID Foreign key to PartitionedTableConfig table.

ExecutionID GUID generated for the execution run.

LogDateTime Date and time the message was logged.

Message The log message.

Sample Configuration
The SampleConfiguration.sql script initializes the configuration for AdventureWorks. The script can be

modified for use in customer implementations. Execute the script to initialize the database.

INSERT INTO [dbo].[PartitionedModelConfig]
VALUES(
 1 --[PartitionedModelConfigID]
 ,'localhost' --[AnalysisServicesServer]
 ,'AdventureWorks' --[AnalysisServicesDatabase]
 ,1 --[InitialSetUp]
 ,1 --[IncrementalOnline]
 ,1 --[IncrementalParallelTables]
 ,1 --[IntegratedAuth]
);

INSERT INTO [dbo].[PartitionedTableConfig]
VALUES(
 1 --[PartitionedTableConfigID]
 ,1 --[PartitionedModelConfigID]
 ,'2012-12-01' --[MaxDate]
 ,1 --[Granularity] 1=Monthly
 ,12 --[NumberOfPartitionsFull]
 ,3 --[NumberOfPartitionsForIncrementalProcess]
 ,'Internet Sales' --[AnalysisServicesTable]
 ,'[dbo].[FactInternetSales]'--[SourceTableName]

10

 ,'OrderDateKey' --[SourcePartitionColumn]
),
(
 2 --[PartitionedTableConfigID]
 ,1 --[PartitionedModelConfigID]
 ,'2012-12-01' --[MaxDate]
 ,2 --[Granularity] 2=Yearly
 ,3 --[NumberOfPartitionsFull]
 ,1 --[NumberOfPartitionsForIncrementalProcess]
 ,'Reseller Sales' --[AnalysisServicesTable]
 ,'[dbo].[FactResellerSales]'--[SourceTableName]
 ,'OrderDateKey' --[SourcePartitionColumn]
);

Database connection info
Connection information to the configuration and logging database can be set in App.config in the

userSettings section.

<userSettings>
 <AsPartitionProcessing.SampleClient.Settings>
 <setting name="ConfigServer" serializeAs="String">
 <value>localhost</value>
 </setting>
 <setting name="ConfigDatabase" serializeAs="String">
 <value>AsPartitionProcessing</value>
 </setting>
 <setting name="ConfigDatabaseIntegratedAuth" serializeAs="String">
 <value>True</value>
 </setting>
 </AsPartitionProcessing.SampleClient.Settings>
</userSettings>

Test Different Configurations
In this section, we will update the configuration, execute the sample, and view the log messages.

In Program.cs, change the UseDatabase constant to be assigned true.

Execute the SampleClient application, and the log query. If the SampleClient application was previously

run from the Getting Started section, messages will be shown saying the partitions already exist and are

already processed.

Latest execution log query

In addition to the console output, the following query on the configuration and logging database shows

the execution results. This can be used to test the different configurations below.

SELECT [Message]
FROM [dbo].[PartitionedModelLog]
WHERE ExecutionID =
(SELECT [ExecutionID] FROM [dbo].[PartitionedModelLog]
 WHERE [LogDateTime] = (SELECT MAX([LogDateTime]) FROM [dbo].[PartitionedModelLog])
)
ORDER BY [LogDateTime]

11

Incremental mode
Run the following UPDATE statement to switch to incremental mode:

UPDATE [dbo].[PartitionedModelConfig] SET [InitialSetUp] = 0

Execute SampleClient application, and the log query. The following results should be shown. Only the

specified number of most recent partitions are processed as an online operation.

Start: 12:41:02 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-10 /Full
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2012 /Full

Final operations

Save changes ...

Finish: 12:41:07 PM

12

Increment partition range
Run the following UPDATE statement to increment the partition range by one period.

UPDATE [dbo].[PartitionedTableConfig] SET [MaxDate] = '2013-01-01'

Execute SampleClient application, and the log query. The following results should be shown. The oldest

partition is removed from both tables, a new one is added and the most recent partitions are processed.

Start: 12:47:26 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-01
 MAX partition: 2012-12
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Remove old partition 2012-01
 Parallel process partition 2012-11 /Full
 Parallel process partition 2012-12 /Full
 Create new partition 2013-01
 Parallel process partition 2013-01 /Full

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2010
 MAX partition: 2012
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Remove old partition 2010
 Create new partition 2013
 Parallel process partition 2013 /Full

Final operations

Save changes ...

Finish: 12:47:34 PM

13

Offline processing
Run the following UPDATE statement to perform offline processing to potentially use less memory

during processing.

UPDATE [dbo].[PartitionedModelConfig] SET [IncrementalOnline] = 0

Execute SampleClient application, and the log query. The following results should be shown. The

partitions are processed using RefreshType of DataOnly, and a Recalc operation is performed to bring

the model back online.

Start: 12:53:19 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly

Final operations

Save changes ...
Recalc model to bring back online ...

Finish: 12:53:27 PM

14

Sequential table processing
Run the following UPDATE statement to process tables sequentially for less memory usage. This setting

will take longer to process the model.

UPDATE [dbo].[PartitionedModelConfig] SET [IncrementalParallelTables] = 0

Execute SampleClient application, and the log query. The following results should be shown. Changes

are saved for each table individually before moving onto the next table.

Start: 01:04:25 PM
Server: localhost
Database: AdventureWorks

Rolling-window partitioning for table Internet Sales
--

=>Current partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>New partition range (Monthly):
 MIN partition: 2012-02
 MAX partition: 2013-01
 Partition count: 12

=>Actions & progress:
 Parallel process partition 2012-11 /DataOnly
 Parallel process partition 2012-12 /DataOnly
 Parallel process partition 2013-01 /DataOnly
 Save changes for table Internet Sales ...

Rolling-window partitioning for table Reseller Sales
--

=>Current partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>New partition range (Yearly):
 MIN partition: 2011
 MAX partition: 2013
 Partition count: 3

=>Actions & progress:
 Parallel process partition 2013 /DataOnly
 Save changes for table Reseller Sales ...

Final operations

Recalc model to bring back online ...

Finish: 01:04:33 PM

15

Other Options & Considerations

Custom Logging
The LogMessage method in Program.cs is passed as a delegate into the PerformProcessing method, so it

can easily be changed for custom logging requirements.

private static void LogMessage(string message, PartitionedModelConfig partitionedModel)
{
 //Can provide custom logging code here
 ...

Granularity

Mixed granularity

Mixed granularity for a single table may be useful for scenarios such as near-real time refresh of current-

day data, coupled with historical data at a higher grain. This can be achieved by setting up multiple table

configurations for the same table. However, this adds complexity to maintenance of configuration date

ranges, so it may be better to keep all partitions at the lowest required grain.

Switching granularity

If the granularity of an existing partitioned table is changed, the sample does not delete the old

partitions with the old granularity. In this case, it is necessary to manually delete all the existing

partitions except the template partition, which has the same name as the table. This is by design to

avoid inadvertently deleting data.

Fragmentation
Partitioned tables may suffer from fragmentation over time. Defragmentation can be performed as a

processing operation using the RefreshType.Defragmentation enumeration. Detailed discussion and

code samples for defragmentation is outside the scope of this document.

Model Deployment
When deploying new versions of partitioned tabular models that already exist on the target

environment, it is necessary to be aware of the partitioning process already in-place. As shown by this

code sample, partitions are normally created and managed by a separate process. This means the

version of the tabular model from source control does not contain the partitions. A simple deployment

process such as right-click, Deploy from SSDT will lose the partitions and all the data within them. Two

deployment tools that support retaining partitions are BISM Normalizer and the Analysis Services

Deployment Wizard. Both these tools support command-line execution for automated deployment.

Detailed discussion on this topic including the pros and cons of these tools is outside the scope of this

document.

AsPerfMon
Another code sample that may be useful in conjunction with AsPartitionProcessing is the AsPerfMon

tool.

Get AsPerfMon here: https://github.com/Microsoft/AsPerfMon.

https://marketplace.visualstudio.com/items?itemName=ChristianWade.BISMNormalizer3
https://msdn.microsoft.com/library/ms176121.aspx
https://msdn.microsoft.com/library/ms176121.aspx
https://github.com/Microsoft/AsPerfMon

16

AsPerfMon can be used to check real-time memory usage during processing. It splits memory usage by

database, which is informative when multiple databases share the same server.

This is especially useful for Azure AS since you can’t use Task Manager or create Performance Monitor

counters. Similar functionality is provided by the Metrics section in the control blade for an Azure AS

server in the Azure Portal. By using Metrics, you can check usage for the past day or week. AsPerfMon is

for real-time monitoring during processing.

It works by polling the DISCOVER_OBJECT_MEMORY_USAGE Data Management View. This view is

representative and very useful, but in some rare cases may double count allocations, so not always

100% accurate.

https://msdn.microsoft.com/en-us/library/bb934098.aspx

